On the assimilation of total-ozone satellite data
نویسندگان
چکیده
A two-dimensional model for advection and data assimilation of total-ozone data has been developed. The Assimilation Model KNMI (AMK) is a global model describing the transport of the column amounts of ozone, by a wind field at a single pressure level, assuming that total ozone behaves as a passive tracer. In this study, ozone column amounts measured by the TIROS Operational Vertical Sounder (TOVS) instrument on the National Oceanic and Atmospheric Administration (NOAA) polar satellites and wind fields from the Meteorological Archive and Retrieval System (MARS) archives at ECMWF have been used. By means of the AMK, the incomplete space-time distribution of the TOVS measurements is filled in and global total-ozone maps at any given time can be obtained. The choice of wind field to be used for transporting column amounts of ozone is extensively discussed. It is shown that the 200-hPa wind field is the optimal single-pressure-level wind field for advecting total ozone. Assimilated ozone fields are the basic information for research on atmospheric chemistry and dynamics, but are also important for the validation of
منابع مشابه
Multi sensor reanalysis of total ozone
A single coherent total ozone dataset, called the Multi Sensor Reanalysis (MSR), has been created from all available ozone column data measured by polar orbiting satellites in the near-ultraviolet Huggins band in the last thirty years. Fourteen total ozone satellite retrieval datasets from the instruments TOMS (on the satellites Nimbus-7 and (EOS-Aura), and GOME-2 (Metop-A) have been used in th...
متن کاملFour-dimensional variational assimilation of ozone profiles from the Microwave Limb Sounder on the Aura satellite
[1] Ozone profiles from the Microwave Limb Sounder (MLS) onboard the Aura satellite of the NASA’s Earth Observing System (EOS) were experimentally added to the European Centre for Medium-range Weather Forecasts (ECMWF) four-dimensional variational (4D-var) data assimilation system of version CY30R1, in which total ozone columns from Scanning Imaging Absorption Spectrometer for Atmospheric CHart...
متن کاملMonitoring of observation errors in the assimilation of satellite ozone data
[1] Ozone observations from the Solar Backscatter UltraViolet/2 (SBUV/2) instruments and/or the Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) have been assimilated in near-real time at NASA’s Data Assimilation Office (DAO) since January 2000. The ozone data assimilation system was used as a tool for detecting and characterizing changes in the observation errors. The forecast model capt...
متن کاملAssimilation of stratospheric ozone in the chemical transport model STRATAQ
We describe a sequential assimilation approach useful for assimilating tracer measurements into a threedimensional chemical transport model (CTM) of the stratosphere. The numerical code, developed largely according to Khattatov et al. (2000), uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonabl...
متن کاملOzone Distributions Derived from Satellite Data Assimilation and Their Impact on the Stratospheric Temperatures
Using a linear version of the ECMWF radiative transfer code it is possible to evaluate the impact of a prescribed ozone climatology on the stratospheric temperatures produced by climate models. So far referenced ozone climatologies have been derived by compilations and simple spatial interpolations of satellite and soundings data with rather coarse vertical resolutions and sometimes inhomogeneo...
متن کامل